Periodic and asymptotically periodic solutions in nonlinear coupled Volterra integro-dynamic systems with infinite delay on time scales

نویسندگان

چکیده

Let T be a periodic time scale. The purpose of this paper is to use Schauder's fixed point theorem prove the existence and asymptotically solutions nonlinear coupled Volterra integro-dynamic systems with infinite delay on scales. results obtained here extend work Raffoul r1 .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions of Periodic Delay Lotka Volterra Equations and Systems

By using the continuation theorem of coincidence degree theory, sufficient and realistic conditions are obtained for the existence of positive periodic solutions for both periodic Lotka Volterra equations and systems with distributed or statedependent delays. Our results substantially extend and improve existing results. 2001 Academic Press

متن کامل

Dynamic Behaviors of an Almost Periodic Volterra Integro Dynamic Equation on Time Scales

This paper is concerned with an almost periodic Volterra integro dynamic equation on time scales. Based on the theory of calculus on time scales, by using differential inequality theory and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and the global attractivity of the system are obtained. Then, by using the properties of almost periodic func...

متن کامل

Bounded and Periodic Solutions of Nonlinear Integro-differential Equations with Infinite Delay

By using the concept of integrable dichotomy, the fixed point theory, functional analysis methods and some new technique of analysis, we obtain new criteria for the existence and uniqueness of bounded and periodic solutions of general and periodic systems of nonlinear integro-differential equations with infinite delay.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in the theory of nonlinear analysis and its applications

سال: 2021

ISSN: ['2587-2648']

DOI: https://doi.org/10.31197/atnaa.691860